

Cauliflower

Sampling Notes

The nutritional status of this vegetable crop is monitored using soil tests and plant analysis. Monitoring regularly is important to help sustain optimum levels and avoid nutritional disorders. If disorders do occur, rapid diagnosis is necessary to assist correction.

Leaf

Sampling Time: When the head first appears (buttoning).

Plant Part Youngest mature wrapper leaf.

Collect From:

Quantity per Sample: 20 - 30 leaves.

Recommended Tests: Basic Plant (BP), Molybdenum (Mo).

Comments: To help diagnose an obvious problem, leaves showing the first signs of the distinctive symptoms should be

collected as soon as abnormalities appear. If sampling outside the normal sampling time it is useful to take a second sample of similar, healthy leaves from nearby unaffected plants for analysis as a comparative standard.

Sampling Time: Prior to crop establishment.

Core Depth 15cm.

Collect From: Randomly throughout the area to be planted.

Quantity per Sample: 12 - 20 cores.

Recommended Tests: Basic Soil (BS), Sulphur profile (S), Available Nitrogen (AN).

Comments: If a problem is suspected during the growing season, then a sample should be taken from the rooting zone

immediately adjacent to the plant. Collecting a second sample from an unaffected area may help identify the

cause of the problem.

Comments

Cauliflower have a high fertility requirement, and like all brassica, are very susceptible to boron and molybdenum deficiencies.

Molybdenum deficiency is common and results in a narrow, twisted leaves known as Whiptail.

Boron deficiency causes hollow stems and bronze coloured curds.

Nitrogen deficiency will appear as a purple pink coloration in the foliage. This symptom can also be induced by other factors such as cold weather, root damage from nematodes, drought stress and water logging.

Cauliflower is also fairly susceptible to deficiencies of sulphur, potassium, magnesium, manganese, zinc and copper.

Results for copper, zinc and manganese in leaves sprayed with fungicides will not be reliable due to adhering spray residues on the leaves.

Iron deficiency symptoms may exist even when leaf levels appear satisfactory. This may be due to the presence of physiologically inactive forms of iron within the tissue. Also, soil contamination of leaves growing near the ground may elevate total iron results.

References

Fertiliser recommendation for horticultural crops. HortResearch HortNET, 1997.

Blackmore, L.C; Searle, P.L and Daly, B.K. 1987. Methods for chemical analysis of soils. NZ Soil Bureau Scientific Report 80. NZ Soil Bureau, DSIR.

Weir, R.G. and Cresswell, G.C. 1995. Plant nutrient disorders 3. Vegetable crops. Inkata Press.

Scaife, A. and Turner, M. 1983. Diagnosis of mineral disorders in plants. Volume 2, Vegetables. MAFF/ARC London.

Disclaimer

Normal Range levels shown as histograms in test reports relate specifically to the sampling procedure provided in this crop guide. The Normal Range levels in test reports and Comments provided in this Crop Guide are the most up to date available, but may be altered without notification. Such alterations are implemented immediately in the laboratory histogram reports. It is recommended that a consultant or crop specialist be involved with interpretations and recommendations.